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After finding your way to a restaurant for the first time, 
you are able to find it more easily the next time. This 
ability to use past episodes of navigation to achieve 
current goals is ubiquitous across species (Barry, 
Coogan, & Commins, 2016; Cornwell, Johnson, Holroyd, 
Carver, & Grillon, 2008; Judd & Collett, 1998). However, 
recollecting specific episodes is not the only way to 
draw on past experiences. When we seek a new loca-
tion, it may be more efficient to rely on general knowl-
edge aggregated across multiple episodes. For example, 
if you are looking for a new restaurant, an effective 
strategy might be to head toward the neighborhood 
with other restaurants you have liked.

Aggregating across episodes is useful because it 
allows learning of statistical structure, such as the spa-
tial pattern of locations previously visited. Theories of 
memory (McClelland, McNaughton, & O’Reilly, 1995) 
describe this process as resulting from gradual consoli-
dation, in which distinct episodes are integrated off-line 
during sleep over days to weeks. This memory trans-
formation has been demonstrated in rodents, who after 

30 days navigated a familiar arena according to the 
spatial distribution of previously learned locations 
rather than individual past locations (Richards et  al., 
2014).

Recent work suggests that such statistical learning 
can also occur rapidly, within minutes, potentially in 
parallel with the encoding of episodes (Schapiro, Turk-
Browne, Botvinick, & Norman, 2017). However, many 
of the studies showing rapid statistical learning exam-
ined temporal structure in sequences (Saffran, Newport, 
& Aslin, 1996; Turk-Browne, Jungé, & Scholl, 2005) or 
spatial structure in brief arrays of simple objects (Chun 
& Jiang, 1998; Fiser & Aslin, 2001). Spatial structure is 
inherently different in navigation, as patterns of locations 
exist in allocentric rather than egocentric space (i.e., in 
world-centered coordinates, relative to landmarks). How 
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Abstract
While navigating the world, we pick up on patterns of where things tend to appear. According to theories of memory 
and studies of animal behavior, knowledge of these patterns emerges gradually over days or weeks via consolidation 
of individual navigation episodes. Here, we discovered that navigation patterns can also be extracted on-line, prior to 
the opportunity for off-line consolidation, as a result of rapid statistical learning. Thirty human participants navigated 
a virtual water maze in which platform locations were drawn from a spatial distribution. Within a single session, 
participants increasingly navigated through the mean of the distribution. This behavior was better simulated by random 
walks from a model that had only an explicit representation of the current mean, compared with a model that had 
only memory for the individual platform locations. These results suggest that participants rapidly summarized the 
underlying spatial distribution and used this statistical knowledge to guide future navigation.
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humans deploy statistical learning during spatial navi-
gation remains an open question.

Here, we tested this question using a virtual analog 
of the delayed match-to-place water-maze task (Morris, 
1984). Across repeated attempts to locate hidden “plat-
forms” within a single session, we quantified how 
human navigation was informed by previous platform 
locations and the mean of their spatial distribution. We 
interpreted this behavior by modeling it with artificial 
agents who took random walks with knowledge of 
either individual past platform locations or only the 
mean location. We hypothesized that participants would 
shift within session from navigating toward individual 
platforms (episode-based navigation) to navigating 
toward their mean (pattern-based navigation) after 
accruing enough experience to extract a pattern.

Method

Participants

Thirty participants (16 female; age range = 18–22 years) 
completed the study for course credit. The Yale Uni-
versity Human Subjects Committee approved the study 
protocol. We arrived at this sample size by conducting 
a power analysis on data from a pilot study using a 
bootstrapping procedure and Wilcoxon’s signed-rank 
test. We drew from 14 pilot participants with replace-
ment to generate a range of sample sizes. We analyzed 
the increase in number of crossings through platform 
locations from the first to the second half of the experi-
ment. We chose this metric to estimate power because 
it is analogous to the canonical escape-latency measure 
of spatial learning (Cornwell et al., 2008). We ran 1,000 
iterations per sample size and calculated the proportion 
of tests in which the effect was below a significance level 
of .05. Using this proportion as our estimate of power, 
we found that a sample size of 30 participants was suf-
ficient to detect this effect with greater than 99% power. 
This sample size also falls in the range used in other 
studies that have shown a learning effect on escape 
latency (range = 15–52; Cornwell et al., 2008; Richards 
et al., 2014).

Stimuli

The virtual environment was designed as a circular 
arena, adapted from Woolley et  al. (2015) and con-
structed in Blender (Version 2.45; https://www.blender 
.org/). The environment was rendered in MATLAB 
(MathWorks, Natick, MA), and the Psychophysics Tool-
box (Brainard, 1997) was used to display task instruc-
tions. The arena was designed graphically with an 
island theme. The circular floor (radius = 7.85 units) 

was covered by an image of sand (see Fig. 1a). Moun-
tains on the north end and palm trees on the south end 
served as landmarks that provided directional headings 
(see Fig. 1b). The “platforms” were hidden nests of 
turtle eggs, and following Richards et  al. (2014), we 
drew their locations from a normal distribution of dis-
tances d from center (μ = 3.4 units, σ = 0.9067) and a 
circular normal distribution of angles θ between the 
platform and the eastern cardinal direction (μ = 0.2618 
radians, κ = 8).

Procedure

Participants were instructed that they were on an island 
searching for a total of 20 turtle eggs buried below the 
sand. They had to find one egg at a time by walking 
around the beach. Participants used the I key to walk 
forward; the J and L keys to turn left and right, respec-
tively; and the M key to walk backward.

At the beginning of the search for each new egg, 
the participant’s location was initialized to the center 
of the arena. For the first 5 s, the ground appeared 
green, and the I and M keys were locked so partici-
pants could only rotate in place left or right. The 
ground then turned to sand, cuing participants that 
they could now start moving forward and backward. 
There was no time limit, so the searches varied in 
length (40 min total, on average). Participants success-
fully located an egg when they walked within a one-
unit radius of the platform location of that egg. When 
this occurred, further navigation was locked, and the 

Statement of Relevance 

We spend most of our life in familiar places—
homes, neighborhoods, workplaces, and stores. 
This repetitiveness allows us to learn about the 
structure of these spaces and to navigate them 
more efficiently. But how quickly do we learn 
the spatial structure of our environments? Studies 
with rodents suggest that this learning happens 
slowly, over days or even weeks of experience. 
In this research, we asked whether the same was 
true for humans. We tested navigation in a novel 
virtual environment. We found that humans can 
learn spatial structure very quickly, on the order 
of minutes. Once learned, they can then use their 
understanding of the space to guide subsequent 
navigation. These findings reveal that the human 
mind is exquisitely sensitive to structure during 
spatial navigation, which may underlie our ability 
to rapidly adapt to new environments.

https://www.blender.org/
https://www.blender.org/
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walls turned green to reveal the outline of an egg. The 
screen then went black, and participants were 
instructed to return to the same location (with the 
cover story of needing to return to the site with the 
appropriate tools). Their location was then reinitial-
ized at the center of the arena, and they navigated to 
the latest egg location. The purpose of having them 
repeat the search was to aid episodic encoding of the 
egg location in the arena with respect to the land-
marks. After finding the egg again, participants were 
told how many new eggs remained to be found. They 
then began to search for the next egg (see Fig. 1c).

Data analysis

The main analyses focused on the search paths from 
trials in which participants first found an egg. We did 
not include search paths from the first two eggs because 
it was not yet possible to extract a pattern, and thus 
episode- and pattern-based navigation could not be 
distinguished. Raw data consisted of x and y coordi-
nates outputted every 40 ms of navigation.

For each search trial, we quantified pattern- and 
episode-based navigation as the number of crossings 
through each representative location. We used the mean 
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with your tools!

You found an
egg! 19 more

to go!
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Fig. 1. Task design and performance. The virtual water maze was a circular, beach-themed arena (a). The mountains and palm trees (b) 
served as north and south directional headings, respectively. Participants were prompted to begin searching at the start of each trial (c). They 
were initialized in the center of the arena. For the first 5 s, the ground appeared green, and they could only rotate in place. The ground then 
turned to sand, and participants could freely navigate. When they found an egg, they were instructed to return to the same location on the 
next trial. On the trial after that, they began searching for a new egg location. We quantified location crossings and time in location during 
participant navigation (d). The timeline graphs depict results from an example participant who showed increased navigation to both loca-
tions over the course of the experiment. The places where the timeline jumps up to the dotted line (indicated by stars) mark the moments 
when a location was crossed, and the lengths at which the timeline remains along the dotted line (indicated by black lines) correspond to 
how long the participant was in those locations.
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of the currently known points (e.g., on Trial 4, the mean 
of egg locations from Trials 1–3) for pattern-based navi-
gation and the most recently learned egg location (e.g., 
on Trial 4, crossings through the egg location from Trial 
3) for episode-based navigation. We focused on the 
most recent location because we expected (and 
observed) this to be more conservative than consider-
ing navigation through all previously learned locations 
(see Fig. S1 in the Supplemental Material available 
online) or through other individual locations, such as the 
first learned location or a randomly sampled previous 
location (see Fig. S2 and Table S1 in the Supplemental 
Material). That is, among previous locations, participants 
navigated more to the most recently learned location, so 
using this as a baseline worked against our hypothesis 
of greater navigation to the mean location.

To define a mean location crossing (e.g., an instance 
in which a pair of coordinates was outside the location 
and the immediately following pair was inside the loca-
tion), we drew a radius that encapsulated the change 
in mean representation across trials as more data points 
(i.e., egg locations) were acquired. For each trial, we 
quantified the full-width half-maximum of the currently 
known distribution, and we halved this value to gener-
ate a radius around the coordinates of the current mean 
(see Fig. S3 in the Supplemental Material). To avoid any 
bias from changes in the size of this mean location 
radius across the task, we used the same trial-specific 
radius value for the recently learned location (see Fig. 
1d). Other ways of defining the radius threshold yielded 
similar results (see the Supplemental Text section in 
the Supplemental Material).

In addition to crossings, we also analyzed the total 
time spent in the most recent location (for episode-
based navigation) and in the current mean location (for 
pattern-based navigation). We calculated this as the 
number of raw data points (output every 40 ms) gener-
ated within these location radii. To account for differ-
ences in trial length, we normalized each measure by 
the total distance traveled during that trial (see Table 
S2 in the Supplemental Material for the nonnormalized 
raw data). We used total distance rather than total time 
to normalize measures because trial length per se does 
not increase crossings or time in noncenter locations. 
Finally, we binned the trials into the first and second 
halves of the experiment to contrast navigation early 
in learning with navigation later in learning. The same 
results were obtained when we treated trial number as 
a continuous variable (see Supplemental Text).

Although our primary focus was on the search trials, 
we used the return trials (when participants were instructed 
to navigate to the location at which they had just found 
an egg) to examine how general task performance changed 
across trials. Normalizing the length of the return paths by 
the distance from starting to ending locations, we found 

a main effect of trial number on escape latency, β = −1.03, 
t = −2.91, p = .0037, with search paths getting shorter (i.e., 
more efficient) across trials (r = −.11, p < .001). We inter-
preted this improved performance as reflecting learning 
of the task and environment (Cornwell et al., 2008). We 
also conducted exploratory analyses of how the mean 
location influenced navigation on return trials (see Fig. S4 
in the Supplemental Material).

Results

Human behavior

We first investigated changes in crossings through, and 
time spent in, the most recent egg location (episode-
based navigation) and the cumulative mean egg loca-
tion (pattern-based navigation) from the first to second 
halves of the experiment (see Fig. 2a). Our analyses 
were based on our a priori prediction that pattern-
based navigation would exceed episode-based naviga-
tion in the second half. Thus, we ran mixed-effects 
linear regressions with condition (most recent and 
cumulative mean), experiment half (first and second), 
and their interaction as regressors predicting the num-
ber of location crossings and the time in each location. 
To control for effects of distance traveled per trial, we 
included total distance as a regressor, as well as its 
interactions with each of our variables of interest. Ran-
dom intercepts for each participant were also included 
in the models. We conducted exploratory analyses of 
different search strategies, including controlling for 
these strategies in our main analyses (see Fig. S5 in the 
Supplemental Material).

The analysis of location crossings revealed a mar-
ginal main effect of experiment half, β = 0.02, t = 1.71, 
p = .085. There were interactions between condition 
and experiment half, β = 0.03, t = 2.06, p = .043, and 
between experiment half and distance, β = −0.02, t = 
−2.52, p = .013; importantly, we did not find an interac-
tion between condition and distance, β = −0.01, t = 
−1.25, p = .216, indicating that differences in crossings 
through the cumulative mean and most recent location 
were not merely a function of overall trial duration and 
number of steps taken. Comparison with a simple main-
effects model revealed that our model better predicted 
participant behavior, χ2(3) = 13.39, p = .004. We then 
applied Wilcoxon’s signed-rank test to our predicted 
Condition × Experiment Half interaction and found 
more cumulative mean than most recent location cross-
ings during the second half, Z = −2.69, p = .007, r = .49, 
95% confidence interval (CI) for the mean difference = 
[−.04, −.004], but not the first half, Z = −0.45, p = .655,  
r = .081, 95% CI for the mean difference = [−0.01, 0.02].

The analysis of time in location similarly revealed 
a main effect of experiment half, β = 16.37, t = 2.21, 
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p = .030. There were again interactions between condi-
tion and experiment half, β = 21.73, t = 2.10, p = .039, 
and between experiment half and distance, β = −20.66, 
t = −3.10, p = .002, but no interaction between condi-
tion and distance, β = 3.18, t = −0.61, p = .541. Com-
pared with a simple main-effects model, our model 
again provided a better fit to participant data, χ2(3) = 
14.58, p = .002. Subsequent tests of the Condition × 
Experiment Half interaction revealed that participants 
spent significantly more time in the cumulative mean 
than in the most recent location during the second half,  
Z = −3.18, p = .001, r = .58, 95% CI for the mean differ-
ence = [−28.78, −7.06], but not the first half, Z = −0.69, 

p = .490, r = .13, 95% CI = for the mean difference [−5.36, 
13.88].

Thus, for both crossings and time in location, partici-
pants showed increased pattern-based navigation rela-
tive to episode-based navigation over a single session.

Control distribution

To verify that our key results were location specific and 
not an artifact of averaging or other analysis choices, 
we repeated the above analyses after rotating the spatial 
distribution of locations by 90°. If the apparent increase 
in pattern-based navigation reflected learning of the 
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Fig. 2. Human behavior and model fits for location crossings and time in location. In (a), normalized crossings (left) and normalized 
time (right) are shown as a function of experiment half (first and second) and condition (mean location and recently learned location). 
The thin lines represent individual participants’ data for each condition. The bold lines represent the mean across participants for each 
condition. The error bars represent ±1 within-subject standard errors. In (b), the average beta weights are shown for each model from 
1,000 regressions, using simulated agent performance on each experiment half to predict human performance. Results are shown sepa-
rately for the episode model and the pattern model. A subset of 250 beta weights for each model indicate the distribution of fits. Error 
bars represent 95% confidence intervals.
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true distribution, the critical interaction between condi-
tion and experiment half should be eliminated. Indeed, 
using the same regressors as in our main analyses, 
neither the rotated model of location crossings, β = 
−0.00090, t = −3.81, p = .705, nor the rotated model of 
time in location, β = −3.31, t = −1.14, p = .258, revealed 
a Condition × Experiment Half interaction (see Fig. S6 
in the Supplemental Material). We also expected fewer 
crossings through, and less time spent in, the rotated 
locations overall. Comparison of the true and rotated 
distributions revealed robustly more crossings through 
real locations, Z = −9.12, p < .001, r = .74, 95% CI = 
[.66, .91], as well as more time spent in real locations, 
Z = −6.11, p < .001, r = .53, 95% CI = [.39, .65].

Simulated agents

Finally, we wanted to verify that our main findings 
reflected pattern-based navigation and could not be 
explained as incidental to episode-based navigation. 
That is, because the shortest path to certain egg loca-
tions was inadvertently through the mean, and the num-
ber of such locations increased over time, an agent with 
knowledge of only previous locations might still show 
an increase in cumulative mean location navigation 
from the first to the second half of the experiment.

To address this possibility, we simulated task perfor-
mance with two biased Gaussian random-walk models—
an episode model and a pattern model—and fitted 
participant behavior with each model’s simulated navi-
gational routes. Random walks have previously been 
shown to be capable of imitating certain optimal behav-
iors (Abbott, Austerweil, & Griffiths, 2015). We pre-
dicted that if participant behavior were driven by an 
explicit representation of the distribution mean, it 
would be better fitted by a randomly navigating agent 
with access only to the cumulative mean, compared 
with an agent with access only to the individual past 
locations (which controls for the amount of incidental 
mean navigation en route to specific locations).

To approximate participant behavior, we constrained 
each model’s search duration to recapitulate the group 
average number of location crossings per trial; for the 
episode model, this location constraint was the average 
number of platform crossings, whereas for the pattern 
model, it was the average number of mean location 
crossings. We determined which egg locations were 
crossed by the episode model on each trial, and in what 
order, by randomly drawing from previously learned 
locations weighted by recency (Bornstein, Khaw, 
Shohamy, & Daw, 2017). Thus, the most recently learned 
egg location was the most likely to be crossed first, 
though the model would cross through multiple previ-
ously learned locations on each simulated trial. For the 

pattern model, the only location represented was the 
mean of the currently known locations.

Like human participants, each model was initialized 
at the origin of a grid. The episode model navigated 
with Gaussian noise through previously learned loca-
tions in the order they were sampled. The pattern 
model navigated with Gaussian noise through the 
mean. Steps in two-dimensional space were generated 
by the equations

xS+1 = xS + K and yS+1 = yS + K,

where K was drawn from a Gaussian distribution (μ = 0, 
σ = 1). Distance from the next step to the goal location 
(a randomly drawn previous egg location for the epi-
sode model and the mean for the pattern model) was 
constrained such that

dS+1 ≤ dS + dSφ,

where φ is a temperature parameter initialized at 0.5 
that monotonically decreased on each trial. This param-
eter was used to capture participants’ decreased ran-
domness and increased navigation toward previous 
locations across trials, as evidenced by the reduction 
in distance traveled per trial over the course of the 
experiment.

We simulated 1,000 agents per model and repeated 
the mixed-effects linear regression on each model’s 
output. For the episode model (see Fig. S7a in the 
Supplemental Material), the critical interaction between 
condition and experiment half was found in analyses 
of both location crossings, β = −0.02, t = −19.71, p < 
.001, and time in location, β = −1.89, t = −25.81, p < 
.001. This was reflected in more crossings through the 
cumulative mean location in the second half, Z = −16.64, 
p < .001, r = .53, 95% CI = [.48, .57], relative to the first 
half, Z = −15.07, p < .001, r = −.46, 95% CI = [−.51, −.41], 
and more time spent in the cumulative mean location 
in the second half, Z = −20.48, p < .001, r = .61, 95%  
CI = [.57, .65], relative to the first half, Z = −21.92, p < 
.001, r = −.64, 95% CI = [−.68, −.60].

For the pattern model (see Fig. S7b in the Supple-
mental Material), there was again an interaction between 
condition and experiment half for both location cross-
ings, β = −0.05, t = −30.13, p < .001, and time in location, 
β = −2.31, t = −33.07, p < .001. This was again reflected 
in more crossings through the cumulative mean location 
in the second half, Z = −26.46, p < .001, r = .84, 95%  
CI = [.83, .85], relative to the first half, Z = −5.05, p < .001, 
r = .16, 95% CI = [.10, .22], and more time spent in the 
cumulative mean location in the second half, Z = −31.10, 
p < .001, r = .82, 95% CI = [.81, .84], relative to the first 
half, Z = −8.52, p < .001, r = −.27, 95% CI = [−.32, −.21].
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Given that both models demonstrated more pattern-
based than episode-based navigation in the second half 
of the experiment, it is critical for our analyses that this 
difference be significantly larger in the pattern model than 
the episode model. If both models displayed analogous 
increases in mean-based navigation, then we would have 
failed to generate models that “learn” differently over the 
course of the task as a function of their different repre-
sentations. Indeed, in the second half, the ratio of mean 
navigation to recently learned location navigation was 
significantly larger in the pattern model than in the epi-
sode model, both in crossings, Z = −25.05, p < .001, r = 
−.71, 95% CI = [−.74, −.68], and time in location, Z = 
−22.70, p < .001, r = −.66, 95% CI = [−.69, −.62]. This shows 
that knowledge of episodes alone yielded qualitatively 
less pattern-based navigation and was not sufficient to 
explain the full increase in navigation to the mean.

To further support the conclusion that participants 
extracted the mean, we attempted to fit participant 
behavior with both models (see Fig. 2b). Specifically, we 
divided each model’s crossings and time in location per 
trial into the first and second halves of the experiment 
(nine trials each after excluding the first two trials). We 
then ran linear regressions for the 1,000 simulations, 
separately using each model’s “behavior” to predict par-
ticipant behavior. Specifically, we z-scored each model’s 
number of crossings and amount of time in location, and 
we input the z scores into the regressions. We chose to 
use z scores instead of raw model performance to ensure 
a common scale between the two models. The result of 
this procedure was a distribution of 1,000 beta weights, 
averaged across participants for each model and experi-
ment half (see Fig. S8 in the Supplemental Material for 
comparison with an alternative episode model that 
avoided previous locations). We analyzed the data for 
crossings and time in location using analyses of variance 
with two factors (model and experiment half).

In predicting crossings, we found main effects of 
model, F(1, 999) = 26.66, p < .001, and experiment half, 
F(1, 999) = 2,031.36, p < .001, as well as an interaction 
between model and experiment half, F(1, 999) = 128.30, 
p < .001. This interaction reflected a switch from a 
greater beta weight for the episode model in the first 
half of the experiment, t(999) = −4.61, p < .001, d = 0.15, 
95% CI = [−0.0033, −0.0013], to a greater beta weight for 
the pattern model in the second half, t(999) = 11.45,  
p < .001, d = 0.36, 95% CI = [0.0050, 0.0070].

Likewise, when predicting time in location, we found 
main effects of model, F(1, 999) = 5.51, p = .019, and 
experiment half, F(1, 999) = 249.18, p < .001, as well as 
an interaction, F(1, 999) = 108.83, p < .001. We again 
observed a switch from dominance of the episode 
model in the first half, t(999) = −10.21, p < .001, d = 
0.32, 95% CI = [−2.96, −2.01], to dominance of the 

pattern model in the second half, t(999) = 5.09, p < .001, 
d = 0.16, 95% CI = [0.93, 2.17].

This change over time in the best-fitting model, for 
both crossings and time in location, provides support 
for our hypothesis of increased pattern-based navigation 
as a result of statistical learning within the session.

Discussion

In this study, we compared the role of memories for past 
locations with generalized knowledge of their spatial 
patterns. We found evidence of navigation to the mean 
of the distribution of past locations, and we used com-
putational modeling to show that this pattern extraction 
was not incidental to having more locations in memory. 
Consistent with our hypothesis, results showed that navi-
gation shifted from episode based to pattern based.

Theories of memory that posit pattern extraction as 
occurring gradually over a long timescale (McClelland 
et al., 1995; Squire & Alvarez, 1995; Winocur & Moscovitch, 
2011) have found support in findings from rodents, 
whose spatial and contextual memories generalize and 
lose episodic detail over a period of weeks (Richards 
et al., 2014). However, these frameworks cannot readily 
explain the rapid transformation we observed in under 
an hour. To the extent that patterns are extracted on-
line, this might suggest an update to conventional theo-
ries: Off-line consolidation may operate not only over 
individual episodes but also over patterns extracted 
within a day that have already begun the process of 
memory transformation. Notably, the short timescale 
we observed is still longer than would be expected on 
the basis of perceptual averaging (Alvarez, 2011), which 
involves the immediate extraction of summary statistics 
from a single, egocentric trial rather than the integration 
of allocentric information across multiple trials.

A more recent theory—that the hippocampus simul-
taneously encodes episodes and extracts patterns—fits 
more naturally with our findings (Schapiro et al., 2017). 
The existence of both kinds of representation during or 
after navigation is consistent with the findings of some 
rodent studies (Leutgeb, Leutgeb, Treves, Moser, & Moser, 
2004). The hippocampus is thought to accomplish epi-
sodic encoding and statistical learning along different 
pathways, centering on the CA3 and CA1 subfields, 
respectively. The reuse of CA1 place cells across environ-
ments encountered in the same session (Cai et al., 2016) 
provides a potential mechanism for rapid pattern extrac-
tion during spatial navigation. Although our study was 
based on the assumption that patterns are extracted 
across all episodes within a session, future work could 
explore the dynamics of this process, including primacy 
biases, recency biases, and incremental learning that for-
gets and updates representations over time.
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