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SPATIAL STATISTICS IN 
PERCEPTION, LEARNING, 

AND NAVIGATION 

Kathryn N. Graves and Nicholas B. Turk-Browne 

Introduction 

The visual world around us, though rich and complex, is highly structured.We are 
often confronted with novelty, but just as often encounter some variation of things 
seen before.The very frst time that you ever saw salt and pepper on a dinner table, 
you may not have immediately thought of them as paired together in a meaningful 
way. Now, however, whenever you see salt on a dining table you probably expect 
to see pepper nearby, and vice versa. 

These underlying regularities in the things we experience provide an organiz-
ing principle by which we represent and remember our environment.The process 
of acquiring regularities operates across multiple dimensions of perception—from 
computing the summary statistics of a single exposure, for example rapidly esti-
mating the average movement direction of a fock of birds, to extracting probabili-
ties across a series of exposures, for example learning to expect where furniture 
and objects are located in a room.The fexible generation of these statistical repre-
sentations allows us to acquire the rich structure of the world. 

In this chapter, we will illustrate the pervasiveness of statistical processing in 
the mind and brain by exploring its infuence on what we perceive in space in an 
instant, what we learn about space across time, and how we navigate space as we 
acquire our environment’s underlying structure. 

Spatial regularities in perception 

Imagine a crowd of people at a concert. If asked to calculate the average height of 
the crowd, how would you do it? Perhaps you’d measure and sum the height of 
each individual person one by one, a slow process. But what if you have less than a 
second to perform your calculation? In that case the only option is to make your 
best guess.As it turns out, your best guess is more accurate than you might think. 
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Humans are profcient at extracting underlying statistical information from vis-
ual input.This relies on ensemble representations—higher-order representations that 
collapse across individual items to describe features of a set of perceptual objects 
as a whole (Alvarez, 2011), such as their average or count. Here, we will focus 
primarily on perceptual averaging, but will return to the more general concept of 
ensemble representations when discussing limitations to this type of representation. 

Perceptual averaging 

When confronted with an array of lines of different lengths, people can compute 
the average length of those lines with striking accuracy (Miller & Sheldon, 1969). 
This computational feat of perceptual averaging is highly robust and operates over 
more than just the length dimension.Whether the average size of circles (Ariely, 
2001), the center of mass of moving points (Alvarez & Oliva, 2008), the average 
orientation of Gabor patches (Parkes et al., 2001), or the average brightness of 
flled circles (Bauer, 2009), the human visual system rapidly acquires the underly-
ing central tendency of various features and dimensions. 

This averaging process requires only a brief exposure to the set. In one experi-
ment, participants were asked to compute the average size of a set displayed for 
1000, 100, or only 50 milliseconds. Across all three durations, participants dis-
played robust perceptual averaging, with minimal deterioration in accuracy even 
with only 50 milliseconds (Chong & Treisman, 2003).This fnding underscores the 
automaticity of perceptual averaging. 

Further, the visual system is not limited to summarizing basic physical features 
and textures. When people were presented with a series of faces ranging from 
“happy” to “sad” or “male” to “female”, they showed a bias for the average emo-
tion or average gender of the set (Haberman & Whitney, 2007), even when the 
load was relatively high, with 16 faces in a set (Haberman & Whitney, 2009). 

What is the role of the set constituents in perceptual averaging, and what hap-
pens to them in this process? A reasonable theory might be that the details of an 
individual target item are discarded during the calculation, as seems evident in 
the phenomenon of crowding.When multiple objects are presented simultaneously 
and in close proximity, visual discrimination of a single object is inhibited by the 
presence of this crowd (Levi, 2008).This suggests that individual objects are not 
represented when viewing an ensemble, yet they play a critical role in generating 
the statistical summary. Models of perceptual averaging argue that individual ele-
ments are not forgotten writ large but are combined and pooled in the human 
visual system (Parkes et al., 2001), out of which arises a summary statistic. 

Robustness to noise 

Regularities refer to the aspects of a display that are shared, but these are usually 
embedded among other idiosyncratic or noisy aspects. Data points that represent 
extremes within a set, for example, may be less informative of the underlying statisti-
cal structure.When confronted with this minimally informative data, studies show 
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Spatial statistics in cognition 

that human learners display robust perceptual averaging. Just as a statistical analysis 
might exclude outliers, people discard noisy data from their computation instead of 
simply integrating all possible data points (de Gardelle & Summerfeld, 2011). 

Importantly, outliers are not the only source of noise.The items in a set may 
vary on multiple dimensions, not all of which are relevant for a given computation. 
If you are estimating the average height of individuals in a crowd, for example, the 
proximity of individuals should not infuence your calculation. In one experiment, 
researchers sought to determine how such irrelevant dimensions infuence per-
ceptual averaging, predicting that a suffciently robust perceptual averaging process 
would separate out the various dimensions and operate selectively over the relevant 
one.The participants were instructed to compare the mean sizes of two arrays pre-
sented side by side. However, either or both the density and number of the objects 
in each array could be varied independent of the mean. Estimates of mean size 
were unaffected when one of these dimensions varied (Chong & Treisman, 2005), 
demonstrating robustness. However, performance was impaired when both varied 
concurrently, suggesting that these dimensions are processed even when ignored in 
isolation, and that there is a limit on robustness when faced with extreme variabil-
ity.This could refect an infuence of these dimensions on the mean computation 
or response-level confict in which density or number attributes are inadvertently 
substituted for the mean and favor selection of the incorrect array. 

Distributional complexity 

Beyond noise and variability, the shape of the underlying distribution can vary 
across features and time.The most straightforward structure from which to extract 
a central tendency is a Gaussian distribution. However, in the real world, sets do 
not always follow that shape. 

Returning to our height estimation analogy, imagine you’re confronted with 
two groups of people instead of one—a group of adults and a group of children. 
Even if the average height in the adult group followed a normal distribution, the 
full set is bimodal, with peaks for both the average adult height and average child 
height. Incredibly, perceptual averaging can handle this complex statistical struc-
ture. One experiment asked people to determine which average size was larger 
between a pair of two side-by-side distributions.The shape of each distribution in 
the pair was either Gaussian, uniform, bimodal, or homogenous, and all possible 
combinations of shape pairs were tested. Across each shape combination, people 
responded to the two distributions with accuracy comparable to that of a single 
distribution (Chong & Treisman, 2003). 

In sum, perceptual averaging is pervasive, enduring despite noisy environments, 
non-normal set distributions, and the presence of multiple sets at once. 

Reduced attention 

Rarely in the real world do we focus one hundred percent of our attention on 
a single task. Even as you’re reading this book, you may also be unconsciously 
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monitoring your cell phone notifcations and trying to adjust to a more comfort-
able sitting position. In the real world, we often attend to multiple things at once: 
The average height of the people in a crowd, the slowly advancing rain clouds in 
the distance, which pocket our wallet is in, and so on. Under reduced attention 
conditions such as these, individuals are worse at remembering spatial locations 
of individual items in a display; however, they are highly accurate at reporting the 
center of mass of the set (Alvarez & Oliva, 2009). 

Further, in some cases attending to multiple things at once is optimal for per-
ceptual averaging. In one study, researchers argued that the averaging process is 
more effcient under conditions in which attention is distributed over a display, 
instead of focused. They found that perceptual averaging during a simultaneous 
distributed-attention task was comparable to that of a pure perceptual averaging 
task with no additional demand (Chong & Treisman, 2005). 

Thus, perceptual averaging is well-adapted for use in the real world.When an 
individual is unable to devote their full attention to the set in front of them, or is 
trying to do multiple things at once, they will still likely acquire the underlying 
structure of the set. 

Development 

We have provided ample evidence that perceptual averaging is a rapid, automatic, 
and durable process. However, as a form of statistical calculation, it may develop 
like other analytical skills that improve signifcantly during childhood (Kolkman et 
al., 2013). Indeed, children show noticeable defcits and variations in strategy when 
compared to adults in performing perceptual averaging. In one study, four- and 
fve-year-old children were profcient in estimating which set in a pair of arrays 
contained a larger mean size, but were still less accurate than adults (Sweeny et al., 
2015). 

What drives these developmental differences? A study of average motion per-
ception across development used computational modeling to determine how sta-
tistical computations differ between children and adults. Child behavior was better 
ft by models that averaged fewer of the perceptually available motion directions, 
suggesting that development may relate to the nature of sampling, with larger 
samples drawn as a function of age (Manning et al., 2014). More generally, then, an 
age-related increase in the number of data points sampled from a set may contrib-
ute to greater accuracy of perceptual averaging. 

However, differences across development may also be a function of qualitatively 
different strategies used by children and adults.When participants from both age 
groups were asked to locate the middle of displays of randomly generated dot-
clouds, at a low set size children’s performance refected a strategy of “joining up 
the dots” and estimating the center of gravity of the subsequent shape.This was 
considered a qualitative difference when compared to adults’ strategy of arithmeti-
cally averaging the individual points (Jones & Dekker, 2018).Thus, a combination 
of computational refnement and qualitative shift in strategy may preempt the 
robust perceptual averaging capacities displayed in human adults. 
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Spatial statistics in cognition 

Limitations to ensemble representation 

Although robust to noise, variability, and inattention, reported confdence in statisti-
cal computations is nevertheless subject to the amount of environmental noise 
over which those computations are conducted (Zylberberg et al., 2012). 

More generally, system constraints impose limits on the quantity of data over 
which ensemble representations operate. Visual working memory (VWM), a tempo-
rary storage of accessibly formatted visual information (Baddeley, 1992), under-
lies the generation of ensemble representations. This storage system has limited 
capacity, resulting in downstream limits on the number of representations that 
can be generated at one time. For example, when asked to enumerate multiple 
sets of items simultaneously, people could do so for up to three sets, but no more 
(Feigenson, 2008; Halberda et al., 2006).Thus,VWM imposes a hard cap on the 
number of statistical structures that can be acquired at one time. 

Additionally, while ensemble representations in visual memory enable highly 
accurate reporting of the central tendency of perceived displays, this can come at 
the cost of memory for individual items in the set. Even when some items are 
stored in memory, these memories are biased towards the central tendency (Brady 
& Alvarez, 2011).Thus, although ensemble representations provide a helpful heu-
ristic for quickly summarizing the perceptually rich visual world, generation of 
these representations is not without consequences. 

Nonetheless, ensemble representations are a robust mechanism by which people 
represent and remember features of the implicit structure of their immediate visual 
environment. Even though peak profciency with perceptual averaging is not reached 
until adulthood, its computational power and fexibility (but also its limitations) are 
evident in the examples we have reviewed thus far. However, these scenarios have 
involved displays of static statistical distributions. Critically, the real world is anything 
but static. Rather, in many instances structure becomes apparent over time. Thus, 
an useful statistical mechanism must be able to acquire underlying statistics not just 
from the current visual experience, but by aggregating across a series of experiences. 

Spatial regularities in learning 

Say that you went to a big-name grocery store in your city and noticed that the 
oranges were displayed on the far-right area of the produce section. On a differ-
ent day, you went to another grocery store location and noticed that the oranges 
were again to the far right.You have the same experience at another location, and 
another. Later you enter another grocery store at yet another different location. 
Where would you frst look for oranges? 

At this point, you would likely say the far-right area of the produce section. 
However, you did not start out having this prediction by default—the regularity 
on which you are mounting your prediction emerged gradually, over shopping 
trips.As mentioned before, ensemble statistical processing is highly fexible.As with 
acquiring structure from a single perceptual array, the visual system can acquire 
spatial statistics across time by linking sequential visual experiences. 
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Distributions in time 

We previously discussed perceptual averaging in the context of static displays. 
However, spatial statistics can also emerge over time. In one study, participants 
viewed displays of dots whose motion was drawn from a distribution, where a 
subset of directions occurred with high frequency across trials (Chalk et al., 2010). 
When asked to detect the motion direction of a dot display, reports were signif-
cantly biased towards the most frequently presented directions. Further, on trials 
where no motion signal was presented (pure noise), participants “hallucinated” 
stimuli moving in the most frequent direction. Thus, these learned regularities 
created spatial statistical representations so ingrained that they altered perceptual 
experience. 

Probability cueing 

Extraction of structure across time extends beyond the central tendency. As with 
our grocery store example, a visual stimulus might be more likely to occur in 
one location than another, based on prior experience.That underlying probability 
structure serves as a spatial cue to what will appear in the future. In one study of 
this probability cueing, participants searched for target letters within a letter display, 
where different target letters appeared with different frequencies at specifc loca-
tions (Hoffmann & Kunde, 1999). Participants were signifcantly faster at detecting 
target letters when they appeared in their high-frequency locations, suggesting that 
over the course of learning, they established expectations based on the underly-
ing probabilities. This computation is fexible, operating over absolute (Shaw & 
Shaw, 1977) and relative spatial positions (Miller, 1988). It is also highly persistent: 
People who learned target location probabilities during one study session showed 
a preserved spatial bias a week later, even after the probability structure changed 
such that the target’s likely location was now evenly distributed across all possible 
locations (Jiang et al., 2013). 

Probability cueing functions not only to highlight where to attend, in the con-
text of target locations, but also where not to attend, in the context of suppressing 
locations of distractors. Just as people are faster to respond to target items that 
appear in high-probability locations, they are better at ignoring distracting, non-
target items via the same statistical property (Goschy et al., 2014). Though like 
cueing of target locations, previous work has shown that distractor suppression 
is a separate calculation (Failing et al., 2019). Additionally, this suppression effect 
is uniquely a function of probability cueing. One study tried and failed to elicit 
similar suppression by explicitly cueing each distractor location, instead of prob-
ability functioning as an implicit cue (Wang & Theeuwes, 2018).This process also 
scales with the salience of the distractor, such that the degree of attention cap-
ture by a given distractor predicts the extent of subsequent suppression (Failing & 
Theeuwes, 2020). 

These phenomena demonstrate the power of probability cueing.This process 
imparts no physical change on the perceived stimuli, but instead tangibly alters the 
salience of the spatial locations where those stimuli appear. However, directly cue-
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ing a target or distractor is not the only way to generate expectations that facilitate 
performance.The context in which these items occur also holds predictive power. 

Contextual cueing 

Once you stepped foot inside the last grocery store, probability cueing would have 
led you to look to the far right for your oranges, as previous experience deter-
mined that to be a high-probability location for oranges. However, this is not the 
only form of statistics-based cueing that led you to look for oranges in this loca-
tion. Other cues as you were walking down the street (e.g., the shape and location 
of the building) and entered the store (e.g., the arrangement of aisles and open 
areas) also predicted where you were going to fnd oranges. 

This contextual cueing occurs when the locations, confguration, and identities of 
some stimuli inform where and what another stimulus will be. In a classic study, 
participants were asked to quickly respond to the orientation of a rotated target 
“T” that appeared amidst a confguration of distractor “L”’s (Chun & Jiang, 1998). 
Unbeknownst to the participants, half of the L confgurations were repeated across 
trials, and the rest were novel and did not repeat. In the repeated confgurations, 
the target T appeared in a specifc location relative to the Ls. A response time 
beneft emerged for the repeated versus novel confgurations over the course of 
the task, indicating that participants associated repeated confgurations with high-
probability locations for a target to appear. Of note, learning in contextual cueing 
occurs at multiple levels, as people acquire both confgural associations and more 
granular associations between targets and local or individual distractors (Jiang & 
Wagner, 2004; Brady & Chun, 2007). 

Probability thus far has been identifed as a mechanism by which task-relevant 
spatial locations are highlighted—whether for expecting a target or suppressing 
a distractor, and whether as a function of the stimulus location or the contex-
tual confguration. However, the power of probability to infuence expectations is 
pervasive, and functions not only in these domains but also for stimulus-stimulus 
relationships. 

Visual statistical learning 

Beyond cueing the location or identity of individual stimuli, probabilities can link 
two or more stimuli across space and time. If, every time you saw oranges to the far 
right in the produce section, you saw limes next to them, fnding limes might lead 
to an expectation to see oranges.These co-occurrences between visual inputs across 
experiences provide another means for learning the structure of the environment. 
Here the role of probability is to generate associations between stimuli based on 
their regularities, what is known as visual statistical learning. 

An initial investigation of visual statistical learning had participants pas-
sively view a series of unique and complex visual scenes (Fiser & Aslin, 2001). 
Unbeknownst to them, these scenes were composed of pairs of objects that had a 
consistent spatial relation. Even though those relationships were never segmented 
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or otherwise explicitly indicated during learning, participants were later able to 
discriminate true from foil pairs at test. Participants acquire spatial statistical rela-
tionships at multiple scales, from the frequency and absolute position of individual 
shapes, to position-independent pair confgurations and conditional probabilities 
of co-occurrence, to higher-order structures (Orbán et al., 2008).Thus, visual sta-
tistical learning may involve more than one type of computation, which collec-
tively represent regularities experienced over time. 

Acquiring spatial regularities comes at the cost of the specifc memory for indi-
vidual items within a confguration.When asked to recall the individual locations 
of spatially paired items, people remember them as being physically closer together 
in space than they were (Yu & Zhao, 2018).This parallels fndings in perceptual 
averaging, where memories for the sizes of individual items in a display were 
biased towards the mean size of the set (Brady & Alvarez, 2011). 

The parallel impairment of item memory by both visual statistical learning 
and perceptual averaging suggests that these processes are related. Indeed, one 
study found evidence of competition between perceptual averaging and visual 
statistical learning, such that acquisition of one statistic impeded acquisition of 
the other (Zhao et al., 2011).This mutual interference suggests that, despite the 
slower multi-experience timescale of visual statistical learning as compared to sin-
gle-experience perceptual averaging, these processes may depend on overlapping 
statistical computations. 

Development 

Thus far we have discussed the development of statistical perception, emphasizing 
refnements to this process over time. Divergent from the developmental trajectory 
of perceptual averaging, probability cueing does not appear to require a protracted 
maturation period. Children as young as six years old demonstrated the cueing 
effect, at a level comparable to their adult counterparts (Yang & Song, 2020). 
Likewise, children and adults perform equivalently in contextual cueing tasks, at 
least when the ratio of repeated versus new displays is high (Yang & Merrill, 2015). 

The early development of statistical abilities is especially clear for visual statisti-
cal learning, a precocious ability evident in newborns (Bulf et al., 2011) and infants 
as young as two months old (Kirkham et al., 2002). This immediate availability 
illustrates the foundational importance of visual statistical learning in providing an 
initial basis for our knowledge about the structure and contents of our environ-
ment. Nevertheless, statistical learning abilities continue to develop through child-
hood (Shufaniya & Arnon, 2018). How this developmental trajectory aligns with 
that of perceptual averaging remains an open question. 

Neural underpinnings 

How might this sophisticated and foundational learning be instantiated in the 
brain? In determining the neural basis of spatial statistical extraction, functional 
magnetic resonance imaging (fMRI), magnetoencephalogram (MEG), and lesion 
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studies have all implicated a common region, the hippocampus. An early lesion 
study found that amnesic patients with damage to the medial temporal lobe were 
impaired on a contextual cueing task (Chun & Phelps, 1999). Critically, their 
impairments were specifc to implicit learning of the underlying statistical structure. 
Both amnesics and controls improved generally in learning the task over time, but 
only controls showed additional facilitation with the repeated compared to novel 
displays. Later fMRI work found reliably lower hippocampal activity in response 
to repeated versus novel context displays, showing that this region differentiated 
stimuli based on acquired structure (Greene et al., 2007).The hippocampus exerts 
infuence over the visual cortex via this extracted structure, directing attention to 
high-likelihood target locations (Stokes et al., 2012). MEG has emphasized the role 
of the hippocampus particularly early in learning, with one study showing peak 
hippocampal activation during the frst few trials of a spatial contextual cueing task 
(Spaak & de Lange, 2020). 

In visual statistical learning, hippocampal activity refects acquired statistical 
relationships in learning-induced changes to the neural representations of indi-
vidual stimuli. When initially unpaired items become temporally associated via 
statistical learning, the patterns of hippocampal activity they evoke individually 
become more similar (Schapiro et al., 2012).The hippocampus similarly supports 
statistical learning in space:When acquiring spatial relationships between pairs of 
stimuli, hippocampal activity predicts the extent of behavioral learning (Karuza et 
al., 2017). 

Statistical learning is thought to rely on the relational binding mechanism of 
the hippocampus, by which associations are formed rapidly and without conscious 
awareness (Ryan et al., 2000). In one study, participants saw a series of faces over-
laid on scenes.At test, they were then shown the studied scenes, overlaid following 
a brief delay with three faces. One was the paired face from practice, with the oth-
ers having been paired with other scenes. Participants responded by indicating the 
paired face. Hippocampal activity during the delay period tracked the association, 
as revealed by eye movements to paired vs. unpaired faces, even when participants 
failed to identify the correct face consciously (Hannula & Ranganath, 2009). 

The implicitness of relational binding aligns with statistical learning, support-
ing the automaticity of this process and downplaying the role of consciousness in 
hippocampal processing, a traditional hallmark of its key role in episodic memory 
(Henke, 2010).Via relational binding, the hippocampus fexibly extracts structure 
across modalities and represents statistics. 

Spatial statistics in navigation 

We have discussed the cognitive and neural mechanisms that allow us to per-
ceive and learn spatial structure. However, most of the studies are constrained with 
respect to how we encounter spatial statics in the real world:Tasks take place in 
a laboratory setting, from a single egocentric viewpoint, on a 2-D display, and by 
stationary participants.This is not representative of naturalistic visual experience in 
which viewpoints change and humans actively move through their environments. 
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Thus, a major question remains as to how these processes translate from sitting in 
a lab to navigating the real world.Although this mystery has not yet been solved, 
there are clues that link statistical learning to navigation in the presence of a shared 
neural mechanism, and evidence of spatial distributional learning in other contexts. 

Hippocampal mechanisms of navigation 

Spatial navigation, the foundational and essential behavior that allows organisms 
to move through and change their environment, is supported by the hippocampus 
in many species, including cats (Coleman & Lindsley, 1975), rats (Davidson et al., 
2009), and primates (Gulli et al., 2020). When navigating a novel environment, 
specialized “place cells” fre in distinct locations such that the fring pattern creates 
an allocentric “map” of the space (O’Keefe & Dostrovsky, 1971). At the level of 
neuronal ensemble dynamics, hippocampal theta oscillations are stronger during 
navigation than during rest (Miller et al., 2018) and may encode environmental 
novelty (Pu et al., 2017). When it comes to remembering navigated paths, this 
theta rhythm in concert with higher-frequency sharp wave ripples support the 
“replay” of experienced trajectories, stabilizing the learned spatial map (Davidson 
et al., 2009).Thus, it is evident that the hippocampus performs multiple essential 
functions during navigation. How can we reconcile this role of the hippocampus 
in navigation with its role described above in statistical learning? 

Statistical spatial representations 

Given the ubiquity of statistical learning, we now explore how this mechanism 
may extend to and support navigation-related processes. Although learning a pair 
structure or computing an average line orientation are not overtly critical during 
navigation, there is evidence that spatial statistics ground representations used during 
navigation. Early models of navigation in the rodent hippocampus attributed place 
cell fring during learning of a novel environment to the construction of a naviga-
tional map (Blum & Abbott, 1996). It is not the discrete fring of a single place cell 
in a single location, but the coordinated fring of cells throughout a learned environ-
ment, that support the aggregated map representation. Further, this representation 
is not immediately accessible upon frst exposure to a novel environment, just as 
spatial or temporal regularities are not learned from a single exposure to one item in 
a series. Instead, this map representation comes online as a function of linking indi-
vidual locations together during exploration of a new environment. 

Additionally, relational binding, a building block of statistical learning, extends 
beyond binding objects to scene images and may be essential in learning the 
locations of landmarks relevant to navigation. An analogous process of object-
place association formation binds objects to locations in space. One study showed 
the criticality of the hippocampus in this process by lesioning rats after they had 
acquired an association.These rodents showed signifcant initial defcits in retain-
ing the association when compared to rats with cortical lesions, indicating that the 
bound representation was stored in the hippocampus (Gilbert & Kesner, 2004). 
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Spatial statistics in cognition 

Given that landmark use is predicated on representing objects in space (Deshmukh 
& Knierim, 2013), this associative mechanism that preempts statistical learning 
seems additionally essential for building representations of features of navigable 
environments. 

Learning in navigable space 

Even though spatial representations are essential for effective navigation, it remains 
unclear what role statistical learning, as explored above, plays in establishing and 
linking these representations. Work with rodents provides some initial insight 
that statistical learning permeates this representational space. For example, when 
rodents learn a series of rooms with partially overlapping spatial layouts, a subset of 
hippocampal neurons will consistently fre across all rooms (Leutgeb et al., 2004). 
In other words, the hippocampus has a specialized response to environmental reg-
ularities during navigation. 

On a longer timescale of days to weeks, the generation of schema, or prior 
knowledge, of spatial relationships indicates another instantiation of statistical 
learning during navigation.After rodents were trained to associate a series of foods 
with different spatial locations over the course of six weeks, they more rapidly 
learned a new food in a new location that ft within the learned framework (Tse 
et al., 2011). Similarly, across a multi-day Morris Water Maze experiment resem-
bling a protracted perceptual averaging task, rodents learned to fnd one hidden 
location per day from a set of normally distributed spatial locations.When their 
learning was tested 30 days later, their search behavior more closely resembled the 
underlying distribution from which the locations were drawn than the true loca-
tions themselves, suggesting that, over the course of consolidation, the rodents had 
extracted this pattern (Richards et al., 2014). 

Although these paradigms implicate neocortical regions as the locus of spatial 
pattern representation (e.g., medial prefrontal cortex), pattern acquisition on a 
shorter timescale may be governed by the hippocampus (Schapiro et al., 2017). 
Similar spatial pattern extraction has been established in humans using a water 
maze paradigm, with one key difference: Instead of spreading learning across mul-
tiple days, people learned a distribution of locations within one session—a time-
scale more akin to visual statistical learning tasks (Graves et al., 2020). Within a 
single session, as participants acquired individual locations from a normally dis-
tributed set, their search behavior for new locations became biased toward the set 
mean.This behavior and timescale, though too gradual for perceptual averaging, 
are reminiscent of the biases found during spatial statistical learning. This stands 
in opposition to the much slower timescale of schema generation, and serves as 
a bridge between statistical learning in the lab and in the real world. It may be 
that the same mechanisms that support statistical learning in 2-D operate over 
navigable space. For example, the mechanism described earlier whereby statistical 
learning leads two associated objects to become represented more similarly in the 
hippocampus (Schapiro et al., 2012) has been shown when two locations have 
been linked through navigation (Deuker et al., 2016). 
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Conclusion 

In this chapter, we outlined the pervasiveness with which spatial statistics infuence 
our representation of the world around us. From perception of ensemble statistics, 
to learning of regularities over time, to acquisition of structure in the real world, 
statistics alter our perception of space, our knowledge about the environment, and 
our subsequent movements and behavior.As such, this chapter serves as a point of 
convergence between three seemingly distinct literatures—perception, learning, 
and navigation—by recognizing their commonalities in terms of shared cognitive 
and neural mechanisms. 

There is emerging evidence that spatial statistical learning enables us to acquire 
the regularities in our navigable environment. Future work is needed to confrm 
the role of the hippocampus in extracting statistics from the real world, as has been 
shown in the lab. Given the multimodal nature of statistical learning, investigations 
should translate spatial statistical learning phenomena from two to three dimen-
sions, so we can better understand what statistics and patterns can be acquired 
readily as we navigate the world. New techniques may be needed as well to obtain 
neural measures during navigation, as the brain responds differently to virtual and 
real-world movement (Bohbot et al., 2017), including the development of wear-
able devices and brain implants (Stangl et al., 2021). 
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